

Progetto <u>CANOA</u> <u>CARCINOMA</u> <u>MAMMARIO:</u> QUALI NOVITÀ PER IL 2015?

"Saper leggere" uno studio c<mark>lin</mark>ico per migliorare la pratica clinica

Coordinatori scientifici: Stefania Gori Giovanni L. Pappagallo Lo studio BOLERO-1 Quali potranno essere le future ricadute nella pratica clinica?

> Antonella Ferro UO Oncologia Medica Trento

Ospedaletto di Pescantina (VR) 10-11 aprile 2015 Villa Quaranta Park Hotel

TRASTUZUMAB

most important breakthrough in the management of BC

Trastuzumab Has Changed the Natural History of HER2-Positive Breast Cancer

Dawood, S. et al. J Clin Oncol; 28:92-98 2010; Slamon DJ, et al. N Engl J Med. 2001;344:783-792. 2. Marty M, et al. J Clin Oncol. 2005;23:4265-4274.

Need for further optimisation of HER2 + BC treatment

- The natural history of HER2-positive MBC has evolved with trastuzumab-based therapy with median OS after diagnosis of metastases now exceeding 3 years
- The disease has been transformed from a rapidly lethal illness to one in which episodes of disease progression are punctuated by long periods of tumor control

Overall Survival in Patients With Systemic Relapses in Post-Trastuzumab Era

Olsen et al, The Breast 2012

- Despite initial response to anti-HER2 therapy, approximately 50% of patients with HER2-positive MBC experience disease progression within a year, requiring further intervention to prolong life
- Therefore, novel agents tor strategies hat can delay resistance are needed for patients with HER2⁺ advanced breast cancer

Since Then....

A Plethora of gods and demigods.... Trastuzumab = Zeus Lapatininb, Pertuzumab, T-DM1...; Who wins? Who marries whom? Who remains on the scene? Who enters the scene first?

Trastuzumab Resistance Mechanisms

Widakowich C, et al. Anticancer Agents Med Chem. 2008,8(5):488-496 Johnston SR. Clin Cancer Res. 2005;11(2 suppl):889s-899s.

How to improve outcomes and delay/overcome anti-HER2 resistance?

- Using other chemo-combinations (chemo doublet + H)
 - BCIRG 007 (TH vs TCH) Valero V et al J Clin Oncol 29:149-156. 2011
 - Trastuzumab + Pac vs Trastuzumab + Pac + Myocet Baselga J et al; Ann Oncol 2014
 - NO
- Using other newer anti-HER2 (lapatinib)
 - NCIC CTG MA.31 (Trastuzumab + Taxane vs Capecitabine + Taxane) Gelmon KA et al; J Clin Oncol. 2015 Mar 16. pii: JCO.2014.56.9590
 - NO
- Combination with other target agents
 - Tandem (Anastrazole vs Anastrazole + Trastuzumab) kaufmann et al; JCO 2008
 - Letrozole vs Letrozole + lapatinib) Johnston et al; JCO 2009
 - Electra (Letrozole vs Letrozole + Trastuzumab) Houber J The Breast, 21 (1), 27-33, 2012
 - Maybe
- Combination with other antiHER2 (dual blockade)
 - YES

Phase III Trial of Lapatinib in Combination With Trastuzumab for Patients With HER2-Positive Trastuzumab-Resistant MBC

Progression-Free Survival in ITT

Overall Survival in ITT

Pertuzumab and Trasuzumab, the best performance in first line....

CLEOPATRA: Study Design

Phase 3 trial in first-line HER2⁺ advanced breast cancer

N = 808

- Locally recurrent, unresectable, or metastatic HER2⁺ breast cancer
- Not previously treated for metastatic disease
- (Neo)adjuvant chemotherapy with or without TRAS permitted
- Disease-free ≥ 12 months since (neo)adjuvant treatment
- Measurable or nonmeasurable disease
- ECOG PS of 0 or 1

Key endpoints: <u>Primary:</u> PFS (central) <u>Secondary</u>: OS, PFS (investigator), ORR, safety

Baselga J, et al. N Engl J Med. 2012;366(2):109-119.

CLEOPATRA: Results

Alternative target agents to overcome trastuzumab resistance in HER2+ disease

- Most other therapies studied in this setting have focused on continued HER2 inhibition.
- At least in part, resistance to trastuzumab is sustained by altered intracellular signalling
- Aberrant PI3K/AKT/mTOR Pathway Activation May Lead to HER2–Targeted Therapy Resistance
- mTOR is a key intracellular point of convergence for a number of cellular signaling pathways
- mTOR inhibition can sensitize HER2overexpressing breast cancer to HER2-directed therapy
- To date, Everolimus is the first non-HER2targeted therapy to address the underlying mechanism of trastuzumab resistance.

Activity of the mTOR Inhibitor Everolimus in HER2⁺ Breast Cancer

- In preclinical models, mTOR inhibitors synergize with trastuzumab and have shown to cause complete regression of mouse HER2+ mammary tumours (Lu et al, 2007)
- EVE + TRAS and the chemotherapy PAC demonstrated promising activity in patients with HER2⁺ advanced breast cancer who progressed during prior trastuzumab and taxane therapy (N = 55)
 - Overall response rate, 21.8%; clinical benefit rate, 36.4%
 - Median PFS, 5.5 months
 - Median OS, 18.1 months
- In BOLERO-3, the addition of EVE to TRAS + vinorelbine resulted in
 - Median PFS: 7 vs 5.78 months; P = .0067: a
 22% reduction in the risk of progression
- Exploratory analysis of biomarkers in the BOLERO-3 trial suggests that the addition of everolimus may be most beneficial in patients with **low PTEN or** high pS6 levels (Jerusalem et al, 2013).

Zhu Y, et al. *Tumour Biol*. 2012;33(5):1349-1362. 2. Lu CH, et al. *Clin Cancer Res*. 2007;13(19):5883-5888. 3. Miller TW, et al. *Clin Cancer Res*. 2009;15(23):7266-7276. 4. Zhang X, et al. *Eur J Cancer*. 48(10):1581-1592. 5. Hurvitz SA, et al. *Breast Cancer Res Treat*. 2013;141(3):437-446. 6. Andre F, et al. *Lancet Oncol*. 2014;15(6):580-591.

Activity of the mTOR Inhibitor Everolimus in HER2⁺ Breast Cancer

 BOLERO-1 was based on the evaluating whether inhibiting mTOR early in metastatic disease will help delay the development of resistance to HER2targeted therapy

> Other divinities to marry to the gods (Trastuzumab & Co) of Olympus?

BOLERO-1/TRIO 019: Study Design

N = 719

- Locally advanced or metastatic HFR2+ breast cancer
- No prior therapy for advanced or metastatic disease (except endocrine therapy)
- Prior (neo)adjuvant TRAS and/or chemotherapy allowed¹
- Measurable disease or presence of ٠ bone lesions (lytic or mixed)

¹Discontinued > 12 mo before randomization;

²Paclitaxel: 80 mg/m² weekly;

Endpoints

³Trastuzumab: 4 mg/kg loading dose on day 1 at cycle 1 followed by 2 mg/kg weekly doses

⁴Patients could discontinue any study treatment due to AEs; other study treatments continued until disease progression or intolerable toxicity

ABC, advanced breast cancer; CBR, clnical benefit rate; ORR, overall response rate; OS, overall survival; PFS, progression free survival.

Difficult to beat Cleopatra

Pertuzumab + Trastuzumab + docetaxel in first line Everolimus + Trastuzumab + Paclitaxel in first line

Difficult to beat Cleopatra

BOLERO-1 vs. CLEOPATRA: Baseline Characteristics

	BOLERO-1				CLEOPATRA ¹	
	Full Population		HR ⁻ subpopulation		Overall population	
Characteristic, %	EVE + TRAS + PAC (N = 480)	PBO + TRAS + PAC (N = 239)	EVE + TRAS + PAC (N = 208)	PBO + TRAS + PAC (N = 103)	PTZ + TRAS + DOC (N = 402)	PBO + TRAS + DOC (N = 406)
Median age, years (range)	54 (23 - 86)	52 (19 - 82)	56 (29 - 85)	53 (24 - 82)	54 (46 - 60)	54 (46 - 61)
Race Caucasian Asian Other	45 41 14	41 44 15	46 41 13	38 46 17	61 32 7	58 33 9
ECOG performance status 0 1	58 42	62 38	61 39	63 37	68 31	61 39
Extent of disease at study entry Locally advanced disease Metastatic disease	7 93	7 93	8 92	8 92	22 non-visceral 78 visceral	22 non-visceral 78 visceral
Hormone receptor status HR+ HR-	57 43	57 43	0 100	0 100	47 53	49 48
Visceral involvement Lung Liver Lung and liver	70 45 37 15	71 43 46 21	65 43 33 14	70 41 49 20	NA	NA
Bone involvement	44	49	33	45	NA	NA

BOLERO-1 vs. CLEOPATRA: Safety profile (> 25% in either study)

		BOLERO-1		CLEOPATRA ¹ PTZ + TRAS + DOC (N = 408)		
AE/Grade, %	l	EVE + TRAS + PA (N = 472)				
	Any	Grade 3	Grade 4		Any	Grade 3/4
Non-hematologic						
Stomatitis	67	13	0		NA	NA
Diarrhea	57	9	0		68	9
Alopecia	47	<1	0		60	0
Rash	40	1	0		37	1
Cough	40	<1	0		NA	NA
Pyrexia	39	2	0		NA	NA
Fatigue	35	5	0		38	2
Epistaxis	33	0	0		NA	NA
Peripheral edema	33	1	0		24	<1
Nausea	33	1	0		44	1
Peripheral neuropathy	29	4	0		NA	NA
Headache	28	1	0		NA	NA
Vomiting	26	1	0		25	1
Decreased appetite	23	1	0		30	2
Mucosal inflammation	NA	NA	NA		27	1
Asthenia	20	2	0		27	2
Hematologic						
Anemia	31	9	1		NA	NA
Neutropenia	38	21	4		53	49

In today, tomorrow and.... day after tomorrow clinical practice

• Everolimus in HER2 + disease not ascended to Olympus....confined to Tarturus??

success with

e new ent of HER2+

HER2e with results

erall results of ogy and umors

Gianni L; ESMO 2014

HER 2 +MBC

Cape +/-H

Cape +/-H

BOLERO-1/TRIO 019

- The addition of everolimus to trastuzumab plus paclitaxel in the first-line MBC setting did not improve outcomes but did **provide a "signal"** in particular in the hormone receptor–negative subset.
- The data validate preliminary observations from other studies that the treatment effect of everolimus differs based on HR expression in patients with HER2-positive MBC in the absence of hormonal therapy
- In BOLERO-3 clinical benefit appeared more pronounced in the HR⁻ subpopulation

	PFS Hazard Ratio (95% CI)
HR ⁻ subpopulation	0.65 (0.48-0.87)
HR ⁺ subpopulation	0.93 (0.72-1.20)

 Similar observations were described in recent phase 3 trials with other HER2-targeted agents, such as lapatinib, pertuzumab (CLEOPATRA), and T-DM1 (EMILIA), and in 7 trials in the neoadjuvant setting

Andre F, et al. Lancet Oncol. 2014;15(6):580-591.

A Different Treatment Effect in the HR⁻ Subpopulation

- In HER2⁺ breast cancer, patients with HR⁻ disease may derive greater PFS benefit from targeted therapies, since the absence of a functional hormone receptor may eliminate a potential escape mechanism for HER2-targeted therapies
- Substantial cross-talk exists between HER2 and ER pathways
- Inhibition of HER2 alone increases activation of ER transcription which may:
 - act as an escape mechanism from HER2-directed agents
 - provide alternative signals for the cells to survive
- The combination of everolimus and trastuzumab could be enhanced if the ER is inhibited concomitantly in HR+/HER2+ population

Blackwell KL, et al. *J Clin Oncol*. 2012;30(21):2585-2592.. Baselga J, et al. *N Engl J Med*. 2012;366(2):109-119. Verma S, et al. *N Engl J Med*. 2012;367(19):1783-1791Nahta R, O'Regan RM. *Breast Cancer Res Treat* 2012; **135**: 39–48.

Considerations and future implications

- Ongoing studies are evaluating the benefits of adding PI3K/mTOR inhibitors to endocrine therapy and HER2-targeted therapy in HER2+, HR+ MBC:
 - NCT02152943: Everolimus, letrozole, and trastuzumab in patients with HER2+, ER+ ABC and other solid tumors
 - NCT01791478: BYL719 (α-specific PI3K inhibitor), letrozole, and trastuzumab in patients with HER2+, ER+ ABC
- Evaluation of the combination everolimus/trastuzumab/endocrine therapy in HR+/HER2+++ mBC as
 - maintenance strategy post-chemotherapy ?????
 - Concomitantly to chemotherapy????
- Data extrapolated from Tam + Chemo (20 ys old) studies : NOT give them at the same time as chemotherapy.
- Perhaps that is wrong: other endocrine therapies work by different mechanisms
 - Some trials are now looking at adding other endocrine therapies like an aromatase inhibitor with chemotherapy

Considerations and future implications

- The effect of everolimus might have been obscured by the use of paclitaxel, which inhibits tumors with PI3K alterations.
- To study trastuzumab plus everolimus without chemotherapy would be interesting for a better indication of reversing a component of HER2 therapy resistance
- Finally, pertuzumab and trastuzumab emtansine are being studied for adjuvant treatment of breast cancer and for first-line treatment of MBC
- How to use these agents after patients are exposed to pertuzumab/trastuzumab/lapatinib/TDM1 in the adjuvant setting is not known, but efficacy is likely to be lower than what has been reported to date????

Murthy RK et al. Cancer 2014

Future Directions: New Targeted Agents Being Investigated in Clinical Trials in HER-Positive Advanced Breast Cancer

[[]Proliferation, survival, invasion, angiogenesis]

